试题
题目:
如图,AB为⊙O的直径,且OC⊥AB,P为OC的延长线上一点,PD切⊙O于点D,BD交OC于点E,若AB=6,PD=4,则DE的长为( )
A.
4
3
B.
8
3
C.
2
10
5
D.
4
10
5
答案
D
解:根据题意可得,∠PDB=∠A,
且∠P+∠DOP=90°,∠AOD+∠DOP=90°,
即可得出∠AOD=∠P,
得证△AOD∽△DPE,
即有PE=PD=4,
又OD⊥PD,
即可得出PO=5,即CE=2,
在Rt△BOE,可得出
BE=
10
,
又BE·DE=CE·(CE+OC);
可得出DE=
4
10
5
.
即答案为:
4
10
5
.
考点梳理
考点
分析
点评
切线的性质;勾股定理;相似三角形的判定与性质.
AB为⊙O的直径,即△ADB为Rt△,先根据切线长定理可得出PC的长,又OD⊥PD,可得PC的值;又∠PDB=∠A,且易得∠AOD=∠P,可证△PDE∽△OAD,可证PE=PD,可得出PE的值;即可得出OE的值,在Rt△OEB中,可得出BE的值,利用相交弦定理即可得出DE的值.
本题主要考查了切线的性质、相交弦定理以及解直角三角形等知识点,本题有一定难度,希望学生能够仔细分析题意,认真完成题目.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )