试题
题目:
如图,直线MN切⊙O于A,AB是⊙O的弦,∠MAB的平分线交⊙O于C,连接CB并延长交MN于N,如果AN=6,NB=4,那么弦AB的长是( )
A.
15
2
B.3
C.5
D.
10
3
答案
D
解:∵AN
2
=BN·NC,NC=9
∴BC=5
∵∠MAC=∠B
∴∠BAC=∠ABC
∵AC=BC=5,∠NAB=∠C
∴△ABN∽△CAN
∴
AB
AC
=
BN
AN
∴
AB
5
=
4
6
解得AB=
10
3
.
故选D.
考点梳理
考点
分析
点评
专题
切线的性质;相似三角形的判定与性质.
直线MN切⊙O于A,根据切割线定理得到AN
2
=BN·NC,因而可求得NC=9,BC=5,根据∠MAB的平分线交⊙O于C,则根据弦切角定理,据∠NAB=∠C,可证明△ABN∽△CAN,利用相似的性质可知
AB
AC
=
BN
AN
,列方程即可求解.
本题主要考查了弦切角定理,从而转化为三角形相似的问题.
压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )