圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.
①根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
②作ON⊥CD,根据AD平分∠CAB交弧BC于点D,求出∠COD=45°,再求出∠OCD=∠ODC=67.5°,
得到CD=DE;
③两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
④根据同弧所对的圆周角等于它所对的圆心角的一半,求出∠COD=45°,再利用等腰三角形的性质和三角形内角和定理求出∠CDE=45°,再求证△CED∽△COD,利用其对应变成比例即可得出结论.
本题考查了相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.
计算题;压轴题.