试题
题目:
如图,正方形ABCD中,E,F分别是AB,BC上的点,DE交AC于M,AF交BD于N;若AF平分∠BAC,DE⊥AF;
记
m=
BE
OM
,
n=
BN
ON
,
p=
CF
BF
,则有( )
A.m>n>p
B.m=n=p
C.m=n>p
D.m>n=p
答案
D
解:DE⊥AF于H点,
∵正方形ABCD
∴∠ABF=∠AON=90°,∠ACF=45°
∵AF平分∠BAC
∴∠BAF=∠OAF
∴△ABF∽△AON,△ACF∽△ABN
∴
AB
OA
=
BF
ON
,∠ANO=∠AFB
∵DE⊥AF
∴Rt△AEH≌Rt△AMH
∴AE=AM
∵∠ANO=∠BNF
∴∠AFB=∠BNF
∴BN=BF
∴
AB
OA
=
BN
ON
∴
AB-AE
OA-AM
>
BN
ON
即(m>n)
∵△ABF∽△AON
∴
ON
BF
=
AN
AF
而△ACF∽△ABN,
∴
CF
BN
=
AF
AN
∴
AN
AF
=
BN
CF
∴
BN
CF
=
ON
BF
(即n=p)
∴m>n=p
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;正方形的性质.
根据已知条件推出△ABF∽△AON,△ACF∽△ABN,得出相似比;其次,通过求证Rt△AEH≌Rt△AMH推出AE=AM,结合求证的相似三角形的对应角相等推出BN=BF,然后,通过相似三角形的性质推出对应边得比相等,组后结合相等关系 进行等量代换,求出结论
本题主要考查相似三角形的判定及性质,等腰三角形的判定及性质,全等三角形的判定及性质.本题的关键在于熟练地综合应用以上定理性质,找到等量关系进行代换.
综合题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )