答案
(1)证明:∵四边形ABCD为正方形,
∴∠DAC=45°,即∠DAQ+∠QAE=45°,
=
,
∵△APQ为等腰直角三角形,
∴∠QAP=45°,即∠PAC+∠QAE=45°,
=
,
∴∠PAC=∠QAD,
=
,
∴△ACP∽△ADQ;
(2)解:设正方形ABCD的边长为2a,则PB=PC=a,
∴AP=
=
=
a,AC=2
a,
∵∠APE=∠ACP=45°,∠PAE=∠CAP,
∴△APE∽△ACP,
∴
=
=
=
;
(3)证明:∵PC=a,
=
,
∴PE=
a,
∵PQ=
AP=
a,
∴EQ=PQ-PE=
a,
又∵△ACP∽△ADQ,
∴
=
,即
=
,
∴DQ=
a,
∴
=
=
,
∴EQ=
DQ.
(1)证明:∵四边形ABCD为正方形,
∴∠DAC=45°,即∠DAQ+∠QAE=45°,
=
,
∵△APQ为等腰直角三角形,
∴∠QAP=45°,即∠PAC+∠QAE=45°,
=
,
∴∠PAC=∠QAD,
=
,
∴△ACP∽△ADQ;
(2)解:设正方形ABCD的边长为2a,则PB=PC=a,
∴AP=
=
=
a,AC=2
a,
∵∠APE=∠ACP=45°,∠PAE=∠CAP,
∴△APE∽△ACP,
∴
=
=
=
;
(3)证明:∵PC=a,
=
,
∴PE=
a,
∵PQ=
AP=
a,
∴EQ=PQ-PE=
a,
又∵△ACP∽△ADQ,
∴
=
,即
=
,
∴DQ=
a,
∴
=
=
,
∴EQ=
DQ.