试题
题目:
如图所示,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点E,点D是BC边的中点,连接ED.
(1)试说明:ED是⊙O的切线;
(2)若⊙O 直径为6,线段BC长为8,求AE的长.
答案
解:(1)证明:连接BE,EO;
∵AB为⊙O直径.
∴∠AEB=90°.
∴△CEB为直角三角形.
∵D为BC中点;
∴DC=BD=ED.
∴∠DEB=∠EBD.
∵EO=OB;
∴∠OEB=∠OBE.
∴∠OEB+∠DEB=∠OBE+∠DBE=∠ABC=90°.
即∠DEO=90°.
∴DE与⊙O相切于点E.
(2)解:∵BE⊥AC,
∴BE×AC=AB×BC,
∵AB=6,BC=8,
∴AC=10,
∴BE=4.8,
∴AE=
AB
2
-
BE
2
=
18
5
.
解:(1)证明:连接BE,EO;
∵AB为⊙O直径.
∴∠AEB=90°.
∴△CEB为直角三角形.
∵D为BC中点;
∴DC=BD=ED.
∴∠DEB=∠EBD.
∵EO=OB;
∴∠OEB=∠OBE.
∴∠OEB+∠DEB=∠OBE+∠DBE=∠ABC=90°.
即∠DEO=90°.
∴DE与⊙O相切于点E.
(2)解:∵BE⊥AC,
∴BE×AC=AB×BC,
∵AB=6,BC=8,
∴AC=10,
∴BE=4.8,
∴AE=
AB
2
-
BE
2
=
18
5
.
考点梳理
考点
分析
点评
切线的判定;直角三角形的性质;勾股定理;圆周角定理;相似三角形的判定与性质.
(1)可求得∠DEO=90°,即可得到DE是⊙O的切线;
(2)根据勾股定理求出AB,以及利用三角形面积求出BE,进而得出AE的长.
此题主要考查了切线的判定方法以及勾股定理和三角形面积求法应用,根据已知得出BE的长是解题关键.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )