试题
题目:
如图所示,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P.问EP与PD是否相等?证明你的结论.
答案
解:DP=PE.证明如下:
∵AB是⊙O的直径,BC是切线,
∴AB⊥BC.
∴DE∥BC,
∴Rt△AEP∽Rt△ABC,得
EP
BC
=
AE
AB
.①
又∵AD∥OC,∴∠DAE=∠COB,
∴Rt△AED∽Rt△OBC.
∴
ED
BC
=
AE
OB
=
AE
1
2
AB
=
2AE
AB
②
由①,②得ED=2EP.
∴DP=PE.
解:DP=PE.证明如下:
∵AB是⊙O的直径,BC是切线,
∴AB⊥BC.
∴DE∥BC,
∴Rt△AEP∽Rt△ABC,得
EP
BC
=
AE
AB
.①
又∵AD∥OC,∴∠DAE=∠COB,
∴Rt△AED∽Rt△OBC.
∴
ED
BC
=
AE
OB
=
AE
1
2
AB
=
2AE
AB
②
由①,②得ED=2EP.
∴DP=PE.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;切线的判定与性质.
解答此题的关键是利用AB是⊙O的直径,BC是切线,求证Rt△AEP∽Rt△ABC和Rt△AED∽Rt△OBC,然后利用其对应边成比例即可得出结论.
此题主要考查学生对相似三角形的判定与性质和切线的判定与性质的理解和掌握,此题的关键是求证Rt△AEP∽Rt△ABC,Rt△AED∽Rt△OBC,此题属于中档题.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )