试题

题目:
青果学院如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为(  )



答案
B
解:在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=
1
2
AP,
根据直线外一点到直线上任一点的距离,垂线段最短,
即AP⊥BC时,AP最短,同样AM也最短,
∴当AP⊥BC时,△ABP∽△CBA,
AP
AC
=
AB
BC

AP
8
=
6
10

∴AP最短时,AP=4.8
∴当AM最短时,AM=
AP
2
=2.4.
故选B.
考点梳理
直角三角形斜边上的中线;垂线段最短;相似三角形的判定与性质.
先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.
此题主要考查学生对相似三角形判定与性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定的拔高难度,属于中档题.
计算题.
找相似题