试题

题目:
在Rt△ABC中,∠A=90°,D,E是AB,AC上两点,DM⊥BC于点M,EN⊥BC于点N,且DM=EN=2.若△BMD,△CNE的面积分别是△ABC面积的
1
4
1
5
,求△ABC的面积.
答案
解:在Rt△BDM和Rt△BCA中,∠B=∠B,
∴△BDM∽△BCA,
∴(
AC
DM
2=
S△ABC
S△MBD
=4,DM=2,
∴AC=4.
同理△ABC∽△NEC,
∴(
AB
EN
2=
S△ABC
S△NEC
=5,EN=2,
∴AB=2
5

∴S△ABC=
1
2
AB·AC=4
5

故答案为:4
5

解:在Rt△BDM和Rt△BCA中,∠B=∠B,
∴△BDM∽△BCA,
∴(
AC
DM
2=
S△ABC
S△MBD
=4,DM=2,
∴AC=4.
同理△ABC∽△NEC,
∴(
AB
EN
2=
S△ABC
S△NEC
=5,EN=2,
∴AB=2
5

∴S△ABC=
1
2
AB·AC=4
5

故答案为:4
5
考点梳理
相似三角形的判定与性质;三角形的面积.
先根据Rt△BDM和Rt△BCA中,∠B=∠B,得出△BDM∽△BCA,由相似三角形的性质可得出AC的长,同理可得出△ABC∽△NEC,由相似三角形面积的比等于相似比的平方可得出△ABC的面积.
本题考查的是相似三角形的判定与性质,解答此题的关键是熟知相似三角形的性质,即相似三角形面积的比等于相似比的平方.
探究型.
找相似题