答案
解:如图,设CF=m,AF=n,
∵AB⊥BC,BF⊥AC,
∴∠ABF+∠CBF=90°,∠ABF+∠BAF=90°,
∴∠CBF=∠BAF,又∠ABC=∠BFC=90°,
∴Rt△AFB∽Rt△ABC,
∴
AB2=AF·AC,又FC=CD=AB=m,
∴m
2=n(n+m),
即
()2+-1=0,
∴
=或
=(舍去),
又Rt△AFE∽Rt△CFB,
====,
即
=.
故答案为:
.
解:如图,设CF=m,AF=n,
∵AB⊥BC,BF⊥AC,
∴∠ABF+∠CBF=90°,∠ABF+∠BAF=90°,
∴∠CBF=∠BAF,又∠ABC=∠BFC=90°,
∴Rt△AFB∽Rt△ABC,
∴
AB2=AF·AC,又FC=CD=AB=m,
∴m
2=n(n+m),
即
()2+-1=0,
∴
=或
=(舍去),
又Rt△AFE∽Rt△CFB,
====,
即
=.
故答案为:
.