试题

题目:
如图(1)至图(3),C为定线段AB外一动点,以AC、BC为边分别向外侧作正方形CADF和正方形CBEG,分别作DD1⊥AB、EE1⊥AB,垂足分别为D1、E1.当C的位置在直线AB的同侧变化过程中,
(1)如图(1),当∠ACB=90°,AC=4,BC=3时,求DD1+EE1的值;
(2)求证:不论C的位置在直线AB的同侧怎样变化,DD1+EE1的值为定值;
(3)求证:不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点.
青果学院青果学院
答案
解:(1)∵DD1⊥AB、EE1⊥AB,
∴∠DD1A=∠EE1B=∠ACB=90°,
∵四边形ACFD与BEGC是正方形,
∴∠DAC=∠CBE=90°,
∴∠DAD1+∠CAB=∠CAB+∠CBA=∠CBA+∠EBE1=90°,
∴∠DAD1=∠ABC,∠EBE1=∠BAC,
∴△DD1A∽△ACB,△EE1B∽△BCA,
DD1
4
=
4
5
EE1
3
=
3
5

DD1=
16
5
EE1=
9
5

∴DD1+EE1=5;

(2)过点C作CK⊥AB于K,
∵DD1⊥AB、EE1⊥AB,
∴∠DD1A=∠EE1B=∠AKC=∠BKC=90°,
∴∠DAD1+∠CAB=∠CAE+∠ACK=∠CBK+∠BCK=∠CBK+∠青果学院EBE1=90°,
∴∠DAD1=∠ACK,∠EBE1=∠BCK,
∵AD=AC,BC=BE,
∴△ADD1≌△CAK,△EBE1≌△BCK,
∴DD1=AK,EE1=BK,
∴DD1+EE1=AB,
∴不论C的位置在直线AB的同侧怎样变化,DD1+EE1的值为定值;

(3)设M为DE的中点,Q为D1E1的中点,青果学院
则:MQ=
1
2
(DD1+EE1)=
1
2
AB
且MQ⊥AB,
当四边形DD1E1E为矩形时,以上结论仍然成立.
∴△ADD1≌△CAK,△EBE1≌△BCK,
又∵D1A=CK=E1B,
∴D1E1的中点就是AB的中点.
∴不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点,
∴此定点M恒在“点C的同侧,与AB的中点Q距离为
1
2
AB
长的点上”.
解:(1)∵DD1⊥AB、EE1⊥AB,
∴∠DD1A=∠EE1B=∠ACB=90°,
∵四边形ACFD与BEGC是正方形,
∴∠DAC=∠CBE=90°,
∴∠DAD1+∠CAB=∠CAB+∠CBA=∠CBA+∠EBE1=90°,
∴∠DAD1=∠ABC,∠EBE1=∠BAC,
∴△DD1A∽△ACB,△EE1B∽△BCA,
DD1
4
=
4
5
EE1
3
=
3
5

DD1=
16
5
EE1=
9
5

∴DD1+EE1=5;

(2)过点C作CK⊥AB于K,
∵DD1⊥AB、EE1⊥AB,
∴∠DD1A=∠EE1B=∠AKC=∠BKC=90°,
∴∠DAD1+∠CAB=∠CAE+∠ACK=∠CBK+∠BCK=∠CBK+∠青果学院EBE1=90°,
∴∠DAD1=∠ACK,∠EBE1=∠BCK,
∵AD=AC,BC=BE,
∴△ADD1≌△CAK,△EBE1≌△BCK,
∴DD1=AK,EE1=BK,
∴DD1+EE1=AB,
∴不论C的位置在直线AB的同侧怎样变化,DD1+EE1的值为定值;

(3)设M为DE的中点,Q为D1E1的中点,青果学院
则:MQ=
1
2
(DD1+EE1)=
1
2
AB
且MQ⊥AB,
当四边形DD1E1E为矩形时,以上结论仍然成立.
∴△ADD1≌△CAK,△EBE1≌△BCK,
又∵D1A=CK=E1B,
∴D1E1的中点就是AB的中点.
∴不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点,
∴此定点M恒在“点C的同侧,与AB的中点Q距离为
1
2
AB
长的点上”.
考点梳理
相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;梯形中位线定理.
(1)由正方形与垂线的性质,易证得:△DD1A∽△ACB,△EE1B∽△BCA,又由相似三角形的对应边成比例,即可求得DD1与EE1的长,则可求得DD1+EE1的值;
(2)定线段AB长为定值;猜想DD1+EE1=AB;过点C作CH⊥AB,垂足为H;再通过两对全等三角形来证明DD1+EE1=AB即可;
(3)利用“梯形的中位线长等于两底和的一半”,设M为DE的中点,Q为D1E1的中点,MQ=
1
2
AB且MQ⊥AB,特殊地,当四边形DD1E1E为矩形时,以上结论仍然成立.又因为可证明D1A=E1B,所以D1E1的中点就是AB的中点.所以,不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点,此定点M恒在“点C的同侧,与AB的中点Q距离为
1
2
AB
长的点上”.
此题考查了相似三角形与全等三角形的判定与性质,正方形的性质,以及梯形中位线的性质等知识.此题综合性很强,注意数形结合思想的应用.
动点型.
找相似题