相似三角形的判定与性质;直角梯形.
由G为AB的中点,得到AG=BG,再由FG=AG,得到FG为AB的一半,根据三角形中一边上的中线等于这边的一半,可得出这边所对的角为直角,即∠AFB=90°,得到选项①正确;由EF垂直于FG,EA垂直于AG,得到一对直角相等,再由FG=AG,利用等边对等角得到一对角相等,两等式相减可得出∠EFA=∠EAF,由EC为角平分线得到一对角相等,再由∠DEF为三角形AEF的外角,利用外角的性质及等量代换可得出一对内错角相等,利用内错角相等两直线平行可得出AF与EC平行,故选项②正确;由FG=BG得到三角形BFG为等腰三角形,而三角形DEH不一定为等腰三角形,故两三角形不一定相似,选项③错误;由AF与EC平行,利用平行得比例,得到DH:HF=DE:AE,而AE=EF,等量代换得到DH:HF=DE:EF,再由一对直角相等及公共角,利用两对对应角相等的两三角形相似可得出三角形DEF与三角形DAG相似,由相似得比例得到DE:EF=DG:AG,而AG=FG,等量代换可得出DE:EF=DG:FG,等量代换变形可得出选项④正确,综上,得到所有正确的选项为①②④.
此题考查了相似三角形的判定与性质,平行线的判定与性质,等腰三角形的判定与性质,三角形的外角性质,三角形的外角性质,以及直角三角形斜边上中线性质的逆定理,熟练掌握性质及判定是解本题的关键.
计算题;证明题;压轴题.