试题

题目:
青果学院(2012·香坊区三模)如图,在△ABC中,∠C=90°,AC=4,BC=3,AB边上有一点D,且AD=AC,过点D作DE⊥AB交BC于点E,则△BDE的周长是(  )



答案
B
解:∵在△ABC中,∠C=90°,AC=4,BC=3,
∴AB=
AC2+BC2
=5,
∴△ABC的周长为:AB+AC+BC=5+4+3=12,
∵AD=AC=4,
∴BD=AB-AD=5-4=1,
∵DE⊥AB,
∴∠BDE=∠C=90°,
∵∠B是公共角,
∴△BDE∽△BCA,
△BDE的周长
△ABC的周长
=
BD
BC
=
1
3

∴△BDE的周长为:
1
3
×12=4.
故选B.
考点梳理
相似三角形的判定与性质;勾股定理.
由在△ABC中,∠C=90°,AC=4,BC=3,利用勾股定理即可求得AB的长,由有两角对应相等的三角形相似,易证得△BDE∽△BCA,然后由相似三角形的周长的比等于相似比,即可求得答案.
此题考查了相似三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用,注意相似三角形的周长的比等于相似比定理的应用是解此题的关键.
找相似题