圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.
由OA=OD,利用等边对等角得到一对角相等,再由AD为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得到AC与OD平行,故选项①正确;由CO垂直于AB,OA=OC,得到三角形AOC为等腰直角三角形,得到∠CAB为45度,再由两直线平行同位角相等得到∠DOB为45度,即∠COD为45度,再由同弧所对的圆周角等于圆心角的一半得到∠ADC为45度,得到一对角相等,再由一对公共角,利用两对对应角相等的两三角形相似得到三角形CED与三角形OCD相似,由相似得比例可得出CD为CE与CO的比例中项,故选项③正确;取弧AC的中点F,得到弧AF与弧CF相等,再由弧AC=2弧CD,得到三条弧相等,利用等弧对等弦得到CF=AF=CD,即CF+AF=2CD,而CF+AF大于AC,可得出AC不等式2CD,故选项②错误.
此题考查了圆周角定理,圆心角、弧及弦之间的关系,以及相似三角形的判定与性质,熟练掌握圆周角定理是解本题的关键.
计算题.