试题
题目:
如图,已知AB为⊙O的直径,C为⊙O上一点,延长BC至D,使CD=BC,CE⊥AD于E,BE交⊙O于F,AF交CE于P,求证:PE=PC.
答案
证明:连接OC,
则OC∥AD,可证明PC为⊙O的切线,
∴PC
2
=PF·PA,
又∵CE⊥AD于E,AB为⊙O的直径,
∴∠PEA=∠PFE=90°,
又∵∠EPF=∠EPF,
∴△PEF∽△PAE,得PE
2
=PF·PA,
故PC
2
=PE
2
.
即PC=PE.
证明:连接OC,
则OC∥AD,可证明PC为⊙O的切线,
∴PC
2
=PF·PA,
又∵CE⊥AD于E,AB为⊙O的直径,
∴∠PEA=∠PFE=90°,
又∵∠EPF=∠EPF,
∴△PEF∽△PAE,得PE
2
=PF·PA,
故PC
2
=PE
2
.
即PC=PE.
考点梳理
考点
分析
点评
专题
切割线定理;相似三角形的判定与性质.
连接OC,可证明PC为⊙O的切线,则PC
2
=PF·PA,又由△PEF∽△PAE,可证明PC=PE.
本题考查的是切割线定理,相似三角形的判定和性质.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )