试题
题目:
作一个辅助圆证明:△ABC中,若AD平分∠A,则
AB
AC
=
BD
DC
.
(提示:不妨设AB≥AC,作△ADC的外接圆交AB于E,证△ABC∽△DBE,从而
AB
AC
=
BD
DE
=
BD
DC
.)
答案
证明:如图,作△ADC的外接圆O,交AB于E,连接DE,
∵四边形ACDE为圆内接四边形,
∴∠BED=∠C,
又∠ABC=∠DBE,
∴△ABC∽△DBE,
∴
AB
AC
=
BD
DE
,
又∵∠EAD=∠CAD,
∴DE=DC,
∴
AB
AC
=
BD
DC
.
证明:如图,作△ADC的外接圆O,交AB于E,连接DE,
∵四边形ACDE为圆内接四边形,
∴∠BED=∠C,
又∠ABC=∠DBE,
∴△ABC∽△DBE,
∴
AB
AC
=
BD
DE
,
又∵∠EAD=∠CAD,
∴DE=DC,
∴
AB
AC
=
BD
DC
.
考点梳理
考点
分析
点评
专题
三角形的外接圆与外心;相似三角形的判定与性质.
如图,作△ADC的外接圆O,交AB于E,连接DE,根据圆内接四边形的外角等于内对角的性质可知∠BED=∠C,可证△ABC∽△DBE,从而有
AB
AC
=
BD
DE
,再根据圆周角∠EAD=∠CAD可得DE=DC,可证结论.
本题考查了圆内接四边形的性质,相似三角形的判定与性质,圆周角定理的综合运用,解题时,需要灵活把握.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )