试题
题目:
如图,已知等边△ABC内接于圆,在劣弧AB上取异于A、B的点M,设直线AC与BM相交于K,直线CB与AM相交于点N,
证明:线段AK和BN的乘积与M点的选择无关.
答案
解:∵△ABC是等边三角形,
∴∠C=∠BAC=∠ABC=60°,
∴∠BAK=∠ABN=120°.
又∠AMK=∠C=60°,
∴∠ABM+∠BAM=∠ABM+∠K,
∴∠K=∠BAM,
∴△ABK∽△BNA,
∴
AB
BN
=
AK
AB
,
即AK·BN=AB
2
.
故线段AK和BN的乘积与M点的选择无关.
解:∵△ABC是等边三角形,
∴∠C=∠BAC=∠ABC=60°,
∴∠BAK=∠ABN=120°.
又∠AMK=∠C=60°,
∴∠ABM+∠BAM=∠ABM+∠K,
∴∠K=∠BAM,
∴△ABK∽△BNA,
∴
AB
BN
=
AK
AB
,
即AK·BN=AB
2
.
故线段AK和BN的乘积与M点的选择无关.
考点梳理
考点
分析
点评
圆内接四边形的性质;相似三角形的判定与性质.
要想证明线段AK和BN的乘积与M点的选择无关,则需证明它们的乘积是一个定值,根据等边三角形的性质、圆内接四边形的性质和三角形的外角的性质发现△ABK和△BNA中有两个角对应相等,从而证明两个三角形相似,进一步证明即可.
此题综合运用了等边三角形的性质、圆内接四边形的性质、外角的性质、相似三角形的判定和性质.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )