答案

证明:如图,∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°.
又∵BD是角平分线,
∴∠CBD=∠A=36°,
又∵∠C=∠C,
∴△ABC∽△BDC,
∴
=
,即BD·BC=CD·AB.
易证BD=BC=AD,
又∵AB=AC,
∴AD
2=CD·AC.

证明:如图,∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°.
又∵BD是角平分线,
∴∠CBD=∠A=36°,
又∵∠C=∠C,
∴△ABC∽△BDC,
∴
=
,即BD·BC=CD·AB.
易证BD=BC=AD,
又∵AB=AC,
∴AD
2=CD·AC.