答案

证明:延长AC至D,使CD=BC,连接BD,
∵BC=CD,
∴∠CBD=∠CDB,
∵∠ACB=2∠ABC,∠ACB=∠CBD+∠CDB,
∴∠D=∠ABC,∠A=∠A,
∴△ABC∽△ADB,
∴
=
,
即AB
2=AC·AD=AC(AC+CD)=AC
2+AC·BC.

证明:延长AC至D,使CD=BC,连接BD,
∵BC=CD,
∴∠CBD=∠CDB,
∵∠ACB=2∠ABC,∠ACB=∠CBD+∠CDB,
∴∠D=∠ABC,∠A=∠A,
∴△ABC∽△ADB,
∴
=
,
即AB
2=AC·AD=AC(AC+CD)=AC
2+AC·BC.