试题
题目:
(2002·四川)如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,
AD
DB
=2,那么△ADE与四边形DBCE的面积的比是( )
A.
2
3
B.
3
4
C.
4
5
D.
4
9
答案
C
解:∵
AD
DB
=2
∴
AD
AB
=
2
3
又∵DE∥BC
∴△ADE∽△ABC,相似比是2:3,面积的比是4:9
设△ADE的面积是4a,则△ABC的面积是9a,四边形DBCE的面积是5a
∴△ADE与四边形DBCE的面积的比是
4
5
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
根据已知可得到△ADE∽△ABC,从而可得到其相似比与面积比,从而不难求得△ADE与四边形DBCE的面积的比.
本题主要了相似三角形的判定与性质的理解及运用.
压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )