试题
题目:
(2002·武汉)已知Rt△ABC中,∠C=90°,O为斜边AB上的一点,以O为圆心的圆与边AC,BC分别相切于点E,F,若AC=1,BC=3,则⊙O的半径为( )
A.
1
2
B.
2
3
C.
3
4
D.
4
5
答案
C
解:如图,连接OE,OF,
设圆的半径为R,
∴OE=OF=R,
∵以O为圆心的圆与边AC,BC分别相切于点E,F,
∴四边形CEOF是正方形,
∴OF∥AC,
∴△OBF∽△ABC,
∴OF:AC=FB:BC,
∴BF=3R,
同理,AE=
1
3
R,
由勾股定理得,AO=
10
3
R,BO=
10
R,AB=
10
,
∵AO+BO=AB,
∴R=
3
4
.
故选C.
考点梳理
考点
分析
点评
切线的性质;勾股定理;相似三角形的判定与性质.
如图,连接OE,OF,设圆的半径为R,OE=OF=R,根据已知条件可以推出则四边形AFOE是正方形,从而得到OF∥AC,可得△OBF∽△ABC,可得OF:AC=FB:BC,由此可以把BF用R表示,同理AE也可以用R表示,然后由勾股定理得,AO=
10
3
R,BO=
10
R,AB=
10
,由此即可求出R.
本题利用了切线的性质,相似三角形的判定与性质,勾股定理求解,有一定的难度.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )