试题
题目:
(2008·鄂州)如图,直线y=-2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,则S
△ABC
=( )
A.1
B.2
C.3
D.4
答案
C
解:∵直线y=-2x+4与x轴,y轴分别相交于A,B两点
∴OA=2,OB=4
又∵∠1=∠2
∴∠BAO=∠OCA
∴△OAC∽△OAB
则OC:OA=OA:OB=1:2
∴OC=1,BC=3,
∴S
△ABC
=
1
2
×2×3=3
故选C.
考点梳理
考点
分析
点评
专题
坐标与图形性质;一次函数图象上点的坐标特征;相似三角形的判定与性质.
本题可先根据直线的方程求出A、B两点的坐标,再根据角相等可得出三角形相似,最后通过相似比即可得出S
△ABC
的大小.
主要考查了一次函数图象上点的特征和点的坐标的意义以及与相似三角形相结合的具体运用.要把点的坐标有机地和图形结合起来求解.
压轴题;数形结合.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )