试题
题目:
(2008·潍坊)如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=( )
A.
x
5
+3
B.
4-
x
5
C.
7
2
D.
12x
5
-
12
x
2
25
答案
A
解:∵在Rt△ABC中,AB⊥AC,AB=3,AC=4,
∴由勾股定理得BC=5,
∵AB⊥AC,PE⊥AB,PD⊥AC,
∴PE∥AC,PD∥AB
∴△CDP∽△CAB,△BPE∽△BCA
∴
PD
AB
=
PC
BC
,
PE
AC
=
BP
BC
,
∴PD=
3(5-x)
5
,PE=
4x
5
,
∴PD+PE=
3(5-x)
5
+
4x
5
=
x
5
+3.
故选A.
考点梳理
考点
分析
点评
相似三角形的判定与性质;勾股定理.
先根据勾股定理求得BC的长,再根据相似三角形的判定得到△CDP∽△CAB,△BPE∽△BCA,利用相似三角形的边对应成比例就不难求得PD+PE了.
本题考查勾股定理,三角形相似的判定和性质,其中由相似列出比例式是解题关键.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )