试题
题目:
(2012·呼伦贝尔)如图,△ABD中,EF∥BD交AB于点E、交AD于点F,AC交EF于点G、交BD于点C,S
△AEG
=
1
8
S
四边形EBCG
,则
AF
AD
的值为( )
A.
3
4
B.
2
3
C.
1
2
D.
1
3
答案
D
解:∵S
△AEG
=
1
8
S
四边形EBCG
,
∴S
△AEG
=
1
9
S
△ABC
,
又∵EF∥BD,
∴
AE
AB
=
AG
AC
(平行线截线段成比例),∠EAG=∠BAC,
∴△AEG∽△ABC,
∴
S
△AEG
S
ABC
=
(
AE
AB
)
2
=
1
9
(相似三角形面积的比等于相似比的平方);
∴
AE
AB
=
1
3
;
∴
AF
AD
=
AE
AB
=
1
3
.
故选D.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;平行线分线段成比例.
利用相似三角形△AEG∽△ABC的性质证得
S
△AEG
S
ABC
=
(
AE
AB
)
2
=
1
9
;然后根据平行线截线段成比例求得
AF
AD
=
AE
AB
=
1
3
.
本题考查了相似三角形的判定与性质、平行线分线段成比例.平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似.
压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )