试题

题目:
已知二次函数f(x)=ax2+bx+c的图象与直线y=25有公共点,且不等式ax2+bx+c>0的解是-
1
2
<x<
1
3
,求a、b、c的取值范围.
答案
解:依题意ax2+bx+c-25=0有解,故△=b2-4a(c-25)≥0,
又不等式ax2+bx+c>0的解是-
1
2
<x<
1
3

∴a<0且有-
b
a
=-
1
6
c
a
=-
1
6

∴b=
1
6
a,c=-
1
6
a.
∴b=-c,代入△≥0得c2+24c(c-25)≥0.
∴c≥24.
故得a、b、c的取值范围为a≤-144,b≤-24,c≥24.
解:依题意ax2+bx+c-25=0有解,故△=b2-4a(c-25)≥0,
又不等式ax2+bx+c>0的解是-
1
2
<x<
1
3

∴a<0且有-
b
a
=-
1
6
c
a
=-
1
6

∴b=
1
6
a,c=-
1
6
a.
∴b=-c,代入△≥0得c2+24c(c-25)≥0.
∴c≥24.
故得a、b、c的取值范围为a≤-144,b≤-24,c≥24.
考点梳理
二次函数与不等式(组).
根据题意,f(x)=ax2+bx+c的图象与直线y=25有公共点,即ax2+bx+c-25=0有解,可得△=b2-4a(c-25)≥0,再根据不等式ax2+bx+c>0的解是-
1
2
<x<
1
3
,结合一元二次不等式的解集的性质,可得b、c与a的关系,代入△=b2-4a(c-25)≥0中,可得答案.
本题主要考查二次函数与不等式的知识点,二次方程ax2+bx+c=0,二次不等式ax2+bx+c>0(或<0)与二次函数y=ax2+bx+c的图象联系比较密切,要注意利用图象的直观性来解二次不等式和二次方程的问题.
找相似题