试题

题目:
若关于x的一元二次方程-x2+x+m=0在实数范围内没有实数根,则抛物线y=-x2+x+m的顶点一定在第
象限.
答案

解:∵抛物线y=-x2+x+m的对称轴x=-
1
2×(-1)
=
1
2

∴可知抛物线的顶点在y轴的右侧,
又∵-x2+x+m=0在实数范围内没有实数根,
∴开口向下的y=-x2+x+m与x轴没有交点,
∴抛物线y=-x2+x+m的顶点一定在第四象限.
故答案为四.
考点梳理
抛物线与x轴的交点.
求出抛物线y=-x2+x+m的对称轴x=-
1
2×(-1)
=
1
2
,可知顶点在y轴的右侧,根据-x2+x+m=0在实数范围内没有实数根,可知开口向下的y=-x2+x+m与x轴没有交点,据此即可判断抛物线在第四象限.
本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,要熟悉二次函数的性质.
计算题.
找相似题