试题
题目:
(2012·镇江)若二次函数y=(x+1)(x-m)的图象的对称轴在y轴的右侧,则实数m的取值范围是( )
A.m<-1
B.-1<m<0
C.0<m<1
D.m>1
答案
D
解:∵令y=0,即(x+1)(x-m)=0,则x=-1或x=m,
∴二次函数y=(x+1)(x-m)的图象与x轴的交点为(-1,0)、(m,0),
∴二次函数的对称轴x=
-1+m
2
,
∵函数图象的对称轴在y轴的右侧,
∴
-1+m
2
>0,
解得m>1.
故选D.
考点梳理
考点
分析
点评
专题
抛物线与x轴的交点.
先令(x+1)(x-m)=0求出x的值即可得出二次函数与x轴的交点坐标,再根据抛物线的对称轴在y轴的右侧即可得到关于m的不等式,求出m的取值范围即可.
本题考查的是抛物线与x轴的交点问题,先根据函数的解析式得出二次函数的图象与x轴的交点是解答此题的关键.
压轴题;探究型.
找相似题
(2013·南昌)若二次函数y=ax
2
+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x
1
,0),(x
2
,0),且x
1
<x
2
,图象上有一点M(x
0
,y
0
)在x轴下方,则下列判断正确的是( )
(2013·大庆)已知函数y=x
2
+2x-3,当x=m时,y<0,则m的值可能是( )
(2012·天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x
1
、x
2
,且x
1
≠x
2
,有下列结论:
①x
1
=2,x
2
=3;②m>-
1
4
;③二次函数y=(x-x
1
)(x-x
2
)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
(2012·泰安)二次函数y=ax
2
+bx的图象如图,若一元二次方程ax
2
+bx+m=0有实数根,则m的最大值为( )
(2012·台湾)有一个二次函数y=x
2
+ax+b,其中a、b为整数.已知此函数在坐标平面上的图形与x轴交于两点,且两交点的距离为4.若此图形的对称轴为x=-5,则此图形通过下列哪一点?( )