试题

题目:
在直角坐标系xOy中,O是坐标原点,抛物线y=x2-x-6与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C.如果点M在y轴右侧的抛物线上,S△AMO=
2
3
S△COB,那么点M的坐标是
(1,-6)或(4,6)
(1,-6)或(4,6)

答案
(1,-6)或(4,6)

解:∵y=x2-x-6为抛物线,
∵抛物线y=x2-x-6与x轴交于A,B两点,
令y=0,设方程x2-x-6=0的两根为x1,x2
∴x1=-2,x2=3,
∴A(-2,0),B(3,0),
设M点坐标为(a,a2-a-6),(a>0)
∵S△AMO=
2
3
S△COB
1
2
×AO×|yM|=
2
3
×
1
2
×OC×|xB|,
1
2
×
2×|a2-a-6|=
2
3
×
1
2
×6×3,
解得,a1=0,a2=1,a3=-3,a4=4,
∵点M在y轴右侧的抛物线上,
∴a>0,
∴a=1,或a=4,
a2-a-6=12-1-6=-6,或a2-a-6=42-4-6=6
∴M点坐标为(1,-6)或(4,6).
故答案为:(1,-6)或(4,6).
考点梳理
抛物线与x轴的交点.
根据抛物线的定义可求出m=2,然后再令y=0,解方程求出A,B两点,再令x=0,求出C点坐标,设出M点坐标,根据它在抛物线上和S△ABO=
2
3
S△COB,这两个条件求出M点坐标.
此题主要考查一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根,若方程无根说明函数与x轴无交点,其图象在x轴上方或下方,两者互相转化,要充分运用这一点来解题,另外此题把三角形的面积关系式与函数的图象联系起来,计算量比较大,关键是利用三角形的几何关系来解题.
找相似题