抛物线与x轴的交点;待定系数法求二次函数解析式.
(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:
①m=0,此时方程为一元一次方程,经计算可知一定有实数根;
②m≠0,此时方程为一元二次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明.
(2)①由于抛物线的图象关于y轴对称,那么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的解析式;
②此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明.
(3)根据②的结论,易知y1、y2的交点为(1,0),由于y1≥y3≥y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3≥y2,所以y≥0,可据此求出a的值,即可得到抛物线的解析式.
此题主要考查了二次函数与一元二次方程的关系、根的判别式、完全平方公式、非负数的性质以及用待定系数法确定函数解析式的方法,难度较大.
计算题;证明题.