试题
题目:
(2010·金华)已知二次函数y=-x
2
+2x+m的部分图象如图所示,则关于x的一元二次方程-x
2
+2x+m=0的解为
-1或3
-1或3
.
答案
-1或3
解:依题意得二次函数y=-x
2
+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),
∴抛物线与x轴的另一个交点横坐标为1-(3-1)=-1,
∴交点坐标为(-1,0)
∴当x=-1或x=3时,函数值y=0,
即-x
2
+2x+m=0,
∴关于x的一元二次方程-x
2
+2x+m=0的解为x
1
=-1或x
2
=3.
故填空答案:x
1
=-1或x
2
=3.
考点梳理
考点
分析
点评
专题
抛物线与x轴的交点.
由二次函数y=-x
2
+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程-x
2
+2x+m=0的解.
此题主要考查了学生的数形结合思想,二次函数的对称性,以及二次函数与x轴交点横坐标与相应一元二次方程的根关系.
压轴题.
找相似题
(2013·南昌)若二次函数y=ax
2
+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x
1
,0),(x
2
,0),且x
1
<x
2
,图象上有一点M(x
0
,y
0
)在x轴下方,则下列判断正确的是( )
(2013·大庆)已知函数y=x
2
+2x-3,当x=m时,y<0,则m的值可能是( )
(2012·镇江)若二次函数y=(x+1)(x-m)的图象的对称轴在y轴的右侧,则实数m的取值范围是( )
(2012·天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x
1
、x
2
,且x
1
≠x
2
,有下列结论:
①x
1
=2,x
2
=3;②m>-
1
4
;③二次函数y=(x-x
1
)(x-x
2
)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
(2012·泰安)二次函数y=ax
2
+bx的图象如图,若一元二次方程ax
2
+bx+m=0有实数根,则m的最大值为( )