试题
题目:
已知抛物线y=
1
2
x
2
+x+c与x轴有交点.
(1)求c的取值范围;
(2)试确定直线y=cx+1经过的象限,并说明理由.
答案
解:(1)∵抛物线y=
1
2
x
2
+x+c与x轴有交点,
∴△=1
2
-4×
1
2
c=1-2c≥0,解得c≤
1
2
;
(2)∵c≤
1
2
,
∴当0<c≤
1
2
时,直线y=cx+1经过一、二、三象限;
当c=0时,直线y=1经过一、二象限;
当c<0时,直线y=cx+1经过一、二、四象限.
解:(1)∵抛物线y=
1
2
x
2
+x+c与x轴有交点,
∴△=1
2
-4×
1
2
c=1-2c≥0,解得c≤
1
2
;
(2)∵c≤
1
2
,
∴当0<c≤
1
2
时,直线y=cx+1经过一、二、三象限;
当c=0时,直线y=1经过一、二象限;
当c<0时,直线y=cx+1经过一、二、四象限.
考点梳理
考点
分析
点评
专题
抛物线与x轴的交点;一次函数图象与系数的关系.
(1)由于抛物线与x轴有交点,故△≥0,求出c的取值范围即可;
(2)根据(1)中c的取值范围确定直线y=cx+1经过的象限.
本题考查的是抛物线与x轴的交点问题及一次函数的图象与系数的关系,在解答(2)时要注意分类讨论,不要漏解.
分类讨论.
找相似题
(2013·南昌)若二次函数y=ax
2
+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x
1
,0),(x
2
,0),且x
1
<x
2
,图象上有一点M(x
0
,y
0
)在x轴下方,则下列判断正确的是( )
(2013·大庆)已知函数y=x
2
+2x-3,当x=m时,y<0,则m的值可能是( )
(2012·镇江)若二次函数y=(x+1)(x-m)的图象的对称轴在y轴的右侧,则实数m的取值范围是( )
(2012·天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x
1
、x
2
,且x
1
≠x
2
,有下列结论:
①x
1
=2,x
2
=3;②m>-
1
4
;③二次函数y=(x-x
1
)(x-x
2
)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
(2012·泰安)二次函数y=ax
2
+bx的图象如图,若一元二次方程ax
2
+bx+m=0有实数根,则m的最大值为( )