试题

题目:
已知抛物线y=x2-3mx+m+n,要达到对所有的实数m,抛物线都与x轴有交点,则n必须满足(  )



答案
A
解:要使抛物线y=x2-3mx+m+n,要达到对所有的实数m,抛物线都与x轴有交点,即无论m取何值,都有
△=(-3m)2-4×1×(m+n)≥0成立,则
9m2-4m-4n=9(m-
2
9
2-
4
9
-4n≥0,
∴-
4
9
-4n≥0.
解可得:n≤-
1
9

故选A.
考点梳理
抛物线与x轴的交点.
抛物线开口向上,要它对所有的实数m与x轴都有交点,则无论m取何值,△≥0.
主要考查了抛物线与x轴的交点.解题时,注意二次函数的性质与一元二次方程之间的关系:与x轴有交点,那么根的判别式不小于0.
找相似题