抛物线与x轴的交点;二次函数的最值.
(1)先计算判别式的值得到△=m
2-4m+8,然后配方得△=(m-2)
2+4,利用非负数的性质得△>0,于是根据抛物线与x轴的交点问题即可得到结论;
(2)根据二次函数的最值问题得到
=-
,解方程得m
1=1,m
2=3,然后把m的值分别代入原解析式即可.
本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的最值问题.
证明题.