试题
题目:
(2010·保定一模)已知二次函数y=-x
2
+2x+m的部分图象如图所示,则关于x的一元二次方程-x
2
+2x+m=0的解为( )
A.x
1
=1,x
2
=3
B.x
1
=0,x
2
=3
C.x
1
=-1,x
2
=1
D.x
1
=-1,x
2
=3
答案
D
解:由二次函数y=-x
2
+2x+m的部分图象可知:
函数的对称轴x=1,
与x轴的交点为(3,0),设另一交点为(x,0)
则有1=
x+3
2
,
∴x=-1,
∴关于x的一元二次方程-x
2
+2x+m=0的解为:x
1
=-1,x
2
=3.
故选D.
考点梳理
考点
分析
点评
抛物线与x轴的交点.
分析知一元二次方程-x
2
+2x+m=0的解为函数与x轴的交点的横坐标,由函数图象知函数的对称轴为x=1,其一交点为(3,0)根据对称关系求出另一点坐标,从而求出方程的解.
此题主要考查一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根,两者互相转化,要充分运用这一点来解题.
找相似题
(2013·南昌)若二次函数y=ax
2
+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x
1
,0),(x
2
,0),且x
1
<x
2
,图象上有一点M(x
0
,y
0
)在x轴下方,则下列判断正确的是( )
(2013·大庆)已知函数y=x
2
+2x-3,当x=m时,y<0,则m的值可能是( )
(2012·镇江)若二次函数y=(x+1)(x-m)的图象的对称轴在y轴的右侧,则实数m的取值范围是( )
(2012·天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x
1
、x
2
,且x
1
≠x
2
,有下列结论:
①x
1
=2,x
2
=3;②m>-
1
4
;③二次函数y=(x-x
1
)(x-x
2
)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
(2012·泰安)二次函数y=ax
2
+bx的图象如图,若一元二次方程ax
2
+bx+m=0有实数根,则m的最大值为( )