试题
题目:
二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,则下列结论正确的是( )
A.ac<0
B.ab>0
C.4a+b=0
D.a-b+c>0
答案
C
解:∵抛物线的开口向下,
∴a<0,
∵抛物线与y轴的交点在y轴的负半轴,
∴c<0,
∴ac>0,故A错误;
∵抛物线的对称轴x=2,
∴-
b
2a
=2,即-b=4a,
∴4a+b=0,故C正确;
∵-b=4a,
∴a、b异号,
∴ab<0,故B错误;
当x=-1时,抛物线与y轴的交点在x轴的下方,即a-b+c<0,故D错误.
故选C.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系;抛物线与x轴的交点.
先根据抛物线的开口向下可知a<0,与y轴的交点在y轴的负半轴可知c<0,由抛物线的对称轴x=2可得出a、b的关系,再对四个选项进行逐一分析.
本题考查的是二次函数的图象与系数的关系,即二次函数y=ax
2
+bx+c(a≠0)的图象,当a<0时,抛物线向下开口,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.
压轴题;探究型.
找相似题
(2013·南昌)若二次函数y=ax
2
+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x
1
,0),(x
2
,0),且x
1
<x
2
,图象上有一点M(x
0
,y
0
)在x轴下方,则下列判断正确的是( )
(2013·大庆)已知函数y=x
2
+2x-3,当x=m时,y<0,则m的值可能是( )
(2012·镇江)若二次函数y=(x+1)(x-m)的图象的对称轴在y轴的右侧,则实数m的取值范围是( )
(2012·天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x
1
、x
2
,且x
1
≠x
2
,有下列结论:
①x
1
=2,x
2
=3;②m>-
1
4
;③二次函数y=(x-x
1
)(x-x
2
)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
(2012·泰安)二次函数y=ax
2
+bx的图象如图,若一元二次方程ax
2
+bx+m=0有实数根,则m的最大值为( )