试题

题目:
(2012·牡丹江)抛物线y=ax2+bx+c与x轴的公共点是(-1,0),(3,0),则这条抛物线的对称轴是直线(  )



答案
C
解:∵抛物线与x轴的交点为(-1,0),(3,0),
∴两交点关于抛物线的对称轴对称,
则此抛物线的对称轴是直线x=
-1+3
2
=1.
故选C.
考点梳理
抛物线与x轴的交点;二次函数的性质.
因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=
x1+x2
2
求解即可.
本题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式来求解,也可以用公式x=
x1+x2
2
求解,即抛物线y=ax2+bx+c与x轴的交点是(x1,0),(x2,0),则抛物线的对称轴为直线x=
x1+x2
2
计算题.
找相似题