试题
题目:
(2012·台湾)有一个二次函数y=x
2
+ax+b,其中a、b为整数.已知此函数在坐标平面上的图形与x轴交于两点,且两交点的距离为4.若此图形的对称轴为x=-5,则此图形通过下列哪一点?( )
A.(-6,-1)
B.(-6,-2)
C.(-6,-3)
D.(-6,-4)
答案
C
解:∵二次函数图形的对称轴为x=-5,图形与x轴的两个交点距离为4,
∴此两点的坐标为(-7,0)和(-3,0)
设二次函数的解析式为:y=(x+7)(x+3),将x=-6代入,得y=(-6+7)(-6+3)=-3
∴点(-6,-3)在二次函数的图象上.
故选C.
考点梳理
考点
分析
点评
抛物线与x轴的交点;二次函数图象上点的坐标特征.
根据二次函数图形的对称轴为x=-5,图形与x轴的两个交点距离为4可知两点的坐标为(-7,0)和(-3,0),设出此函数的解析式,把x=-6代入进行计算即可.
本题考查的是抛物线与x轴的交点问题,根据题意得出二次函数的交点式是解答此题的关键.
找相似题
(2013·南昌)若二次函数y=ax
2
+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x
1
,0),(x
2
,0),且x
1
<x
2
,图象上有一点M(x
0
,y
0
)在x轴下方,则下列判断正确的是( )
(2013·大庆)已知函数y=x
2
+2x-3,当x=m时,y<0,则m的值可能是( )
(2012·镇江)若二次函数y=(x+1)(x-m)的图象的对称轴在y轴的右侧,则实数m的取值范围是( )
(2012·天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x
1
、x
2
,且x
1
≠x
2
,有下列结论:
①x
1
=2,x
2
=3;②m>-
1
4
;③二次函数y=(x-x
1
)(x-x
2
)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
(2012·泰安)二次函数y=ax
2
+bx的图象如图,若一元二次方程ax
2
+bx+m=0有实数根,则m的最大值为( )