试题
题目:
(2011·卢湾区一模)若抛物线y=ax
2
+bx+c与x轴交于点A(0,0)、B(4,0),则抛物线的对称轴为直线
x=2
x=2
.
答案
x=2
解:将点A(0,0)、B(4,0)代入抛物线的解析式y=ax
2
+bx+c,
得
c=0
16a+4b+c=0
,
∴b=-4a,
∵抛物线的对称轴为x=-
b
2a
=-
-4a
2a
=2.
故答案为:x=2.
考点梳理
考点
分析
点评
专题
待定系数法求二次函数解析式;二次函数的性质.
将点A(0,0)、B(4,0)代入抛物线的解析式y=ax
2
+bx+c,得出方程组,再由对称轴的方程得出答案.
本题考查了用待定系数法求二次函数的解析式,以及二次函数的性质.
计算题.
找相似题
(2009·台州)已知二次函数y=ax
2
+bx+c的y与x的部分对应值如下表:则下列判断中正确的是( )
x
…
-1
0
1
3
…
y
…
-3
1
3
1
…
(2009·黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )
(2008·济宁)已知二次函数的图象如图所示,则这个二次函数的表达式为( )
(2006·吉林)由表格中信息可知,若设y=ax
2
+bx+c,则下列y与x之间的函数关系式正确的是( )
x
-1
0
1
ax
2
1
ax
2
+bx+c
8
3
(2001·河北)已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( )