试题
题目:
(2009·黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )
A.y=x
2
-x-2
B.y=-
1
2
x
2
-
1
2
x+2
C.y=-
1
2
x
2
-
1
2
x+1
D.y=-x
2
+x+2
答案
D
解:A、由图象可知开口向下,故a<0,此选项错误;
B、抛物线过点(-1,0),(2,0),根据抛物线的对称性,顶点的横坐标是
1
2
,
而y=-
1
2
x
2
-
1
2
x+2的顶点横坐标是-
-
1
2
2×(-
1
2
)
=-
1
2
,故此选项错误;
C、y=-
1
2
x
2
-
1
2
x+1的顶点横坐标是-
1
2
,故此选项错误;
D、y=-x
2
+x+2的顶点横坐标是
1
2
,并且抛物线过点(-1,0),(2,0),故此选项正确.
故选D.
考点梳理
考点
分析
点评
专题
待定系数法求二次函数解析式.
在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解.当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
本题考查抛物线与系数的关系与及顶点横坐标的计算公式,是开放性题目.一般式:y=a(x-x
1
)(x
2
-x
2
)(a,b,c是常数,a≠0).
压轴题.
找相似题
(2009·台州)已知二次函数y=ax
2
+bx+c的y与x的部分对应值如下表:则下列判断中正确的是( )
x
…
-1
0
1
3
…
y
…
-3
1
3
1
…
(2008·济宁)已知二次函数的图象如图所示,则这个二次函数的表达式为( )
(2006·吉林)由表格中信息可知,若设y=ax
2
+bx+c,则下列y与x之间的函数关系式正确的是( )
x
-1
0
1
ax
2
1
ax
2
+bx+c
8
3
(2001·河北)已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( )
(2001·杭州)若所求的二次函数图象与抛物线y=2x
2
-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为( )