试题
题目:
(2003·温州)如图,已知二次函数y=ax
2
+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是
(2,-1)
(2,-1)
.
答案
(2,-1)
解:设解析式为:y=a(x-x
1
)(x-x
2
)(a≠0),即y=a(x-1)(x-3)
把点C(0,3),代入得a=1.则y=(x-1)(x-3)=x
2
-4x+3.
所以图象的顶点坐标是(2,-1).
考点梳理
考点
分析
点评
待定系数法求二次函数解析式;二次函数的性质.
已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
主要考查了用待定系数法求二次函数的解析式.
找相似题
(2009·台州)已知二次函数y=ax
2
+bx+c的y与x的部分对应值如下表:则下列判断中正确的是( )
x
…
-1
0
1
3
…
y
…
-3
1
3
1
…
(2009·黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )
(2008·济宁)已知二次函数的图象如图所示,则这个二次函数的表达式为( )
(2006·吉林)由表格中信息可知,若设y=ax
2
+bx+c,则下列y与x之间的函数关系式正确的是( )
x
-1
0
1
ax
2
1
ax
2
+bx+c
8
3
(2001·河北)已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( )