数学
如图,某人在一斜坡坡脚A处测得电视塔塔尖C的仰角为60°,沿斜坡向上走到P处再测得塔尖C的仰角为45°,若OA=45米,斜坡的坡比为1:2,且O、A、B在同一条直线上.求电视塔OC的高度及此人所在位置P到AB的距离.(测角器高度忽略不计,结果精确到0.1米.参考数据:
2
≈1.41,
3
≈1.73
)
2013年5月初太康县“高贤寿圣寺塔”被国务院确定为全国重点文物保护单位,寿圣寺塔位于太康县高贤乡,系明代建筑,如图,高贤一中某数学活动小组为了测了寿圣寺塔的高度,在塔前的平地上,选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上),用测角仪测得塔顶D的仰角为75°,且AB间的距离为40米,已知测角仪的高度为1米.
(1)求点B到AD的距离;
(2)求寿圣寺塔的高度.(精确到0.1米,参考数据:
3
=1.73)
实践应用
江苏省第八届园博会于2013年在我市举行,宣传部门在一幢大楼(DE)的顶部竖有一块“江魂秘境,水韵方舟”的宣传牌CD,其宽度为2m,小明在平地上的A处,测得宣传牌的底部D的仰角为60°;又沿着EA的方向前进了22m到B处,测得宣传牌的底部D的仰角为45°(A、E之间有一条河),求这幢大楼DE的高度.(测角器的高度忽略不计,结果精确到0.1m.参考数据:
2
≈
1.414,
3
≈
1.732)
江苏省第八届园博会于2013年在我市举行,宣传部门在一幢大楼(DE)的顶部竖有一块“江魂秘境,水韵方舟”的宣传牌CD,其宽度为2m,小明在平地上的A处,测得宣传牌的顶部C的仰角为60°;又沿着EA的方向前进了22m到B处,测得宣传牌的底部D的仰角为45°(A、E之间有一条河),求这幢大楼DE的高度.(测角器的高度忽略不计,结果精确到0.1m.参考数据:
2
≈
1.414,
3
≈
1.732)
某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的
坡比i=
1
2
,且O、A、D在同一条直线上.
求:(1)楼房OB的高度;
(2)小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)
剑川县电力公司并入南方电网后,为进一步完善农村电路,需建造如图所示的铁塔、架设高压线.已知铁塔AE建在小山AB上,铁塔CD建在与AE水平距离为75米(即BC=75米)的地方,并在铁塔CD处测得塔底C到山顶A的仰角为30°(两铁塔的高相等).如果要在两铁塔顶D、E间架设一条高压线,那么这条高压线至少为多长?
如图,一架飞机在空中P处探测到某高山山顶D处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的正上方C处,此时测得飞机距地面的垂直高度为7千米,求这座山的高约为?(精确到0.1千米,数据
2
≈1.41,
3
=1.73
供选用)
如图,河岸边有座水塔AB,测量人员在河对岸C处测得塔顶A的仰角为30°,然后沿着CB方向前进30米到达D处,又测得A的仰角为45°,请根据上述数据计算水塔的高(结果精确到0.1,
2
≈1.414,
3
≈1.732
).
(2004·呼和浩特)如图,在坡角α为30°的山顶C上有一座电视塔,在山脚A处测得电视塔顶部B的仰角为45°,斜坡AC的长为400米,求电视塔BC的高.
(2004·昆明)如图,初三年级某班同学要测量校园内国旗旗杆的高度,在地面的C点用测角器测得旗杆顶A点的仰角∠AFE=60°,再沿直线CB后退8米到D点,在D点又用测角器测得旗杆顶A点的仰角∠AGE=45°;已知测角器的高度是1.6米,求旗杆AB的高度.(
3
的近似值取1.7,结果保留小数)
第一页
上一页
37
38
39
40
41
下一页
最后一页
975383
975384
975385
975386
975387
975388
975389
975390
975391
975392