数学
(2007·南昌)实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是
(e+c,d),
(e+c,d),
,
(c+e-a,d)
(c+e-a,d)
;
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为
m=c+e-a,
m=c+e-a,
;纵坐标b,d,n,f之间的等量关系为
n=d+f-b.
n=d+f-b.
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x
2
-(5c-3)x-c和三个点
G(-
1
2
c,
5
2
c)
,
S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.
(2007·南充)如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛
物线y=
1
6
x
2
+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=
1
6
x
2
+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.
(2007·南宁)如图1,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A'DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A'落在AH所在的直线上).
(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式;
(2)当x取何值时,y的值最大,最大值是
多少?
(2007·陕西)如图,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D两点的坐标;
(2)若线段OB上存在点P,使PD⊥PC,求过D,P,C三点的抛物线的表达式.
(2007·绍兴)如图,在平面直角坐标系xOy中,O为原点,点A、C的坐标分别为
(2,0)、(1,
3
3
).将△AOC绕AC的中点旋转180°,点O落到点B的位置,抛物线y=ax
2
-2
3
x经过点A,点D是该抛物线的顶点.
(1)求证:四边形ABCO是平行四边形;
(2)求a的值并说明点B在抛物线上;
(3)若点P是线段OA上一点,且∠APD=∠OAB,求点P的坐标;
(4)若点P是x轴上一点,以P、A、D为顶点作平行四边形,该平行四边形的另一顶点在y轴上,写出点P的坐标.
如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点
匀速运动,速度均为1cm/秒,设P、Q运动时间为t(0≤t≤4)
(1)AB的长为
5
5
cm.
(2)过点P做PM⊥OA于M,则P点的坐标为
(
4t
5
,3-
3t
5
)
(
4t
5
,3-
3t
5
)
(用含t的代数式表示).
(3)求△OPQ面积S(cm
2
)与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?
(4)探究△OPQ能否为直角三角形,若能,请直接写出t的值;若不能,请说明理由.
如图,抛物线y=(x-1)
2
+m与x轴交于A、B两点,与y轴交于点C,连BC交对称轴于G点,且BG=2CG.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有两动点M、N(点M在点N的下方),且MN=6,若四边形ACMN的周长最小,试求AN+CM的长.
(3)在第一象限的抛物线上是否存在点P,使tan∠APC=
1
3
?若存在,求出点P的坐标;若不存在,请说明理由.
如图.已知反比例函数
y=
k
x
的图象与二次函数y=ax
2
+x-3的图象相交于点A(4,5)
(1)求a和k的值;
(2)反比例函数的图象是否经过二次函数图象的顶点?说明理由.
(3)若二次函数图象与x轴交于B、D两点,与y轴交于点C.问:反比例函数
y=
k
x
的图象上是否存在一点P,使△PBD的面积等于四边形ABCD面积的2倍?若存在,求出P点的坐标;若不存在,说明理由.
如图,抛物线y=ax
2
-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)求A点坐标并求抛物线的解析式;
(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△PAB是等腰三角形?若存,请直接作出;不存在,请说明理由.
如图,抛物线y=ax
2
+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,
3
).当x=-4和x=2时,二次函数y=ax
2
+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求抛物线的解析式;
(2)若点M、N时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)抛物线对称轴上是否存在一点F,使得△ACF是等腰三角形?若不存在请说明理由;若存在,请求出F点坐标.
第一页
上一页
42
43
44
45
46
下一页
最后一页
937766
937767
937768
937769
937770
937771
937772
937773
937774
937775