数学
设一列数a
1
,a
2
,a
3
,…,a
2010
中任意三个相邻数之和都是35,已知a
3
=2x,a
20
=15,a
99
=3-x,那么a
2011
=
18
18
.
观察下列各式:1×3+1=4=2
2
,2×4+1=9=3
2
,3×5+1=16=4
2
,…请按规律写出第n个等式
n(n+2)+1=(n+1)
2
n(n+2)+1=(n+1)
2
.
观察下列等式:
1=1
2
1+3=2
2
1+3+5=3
2
1+3+5+7=4
2
…
则1+3+5+…+15=
8
8
2
并请你将想到的规律用含有n(n是正整数)的等式来表示就是:
1+3+5+7+…+(2n-1)=n
2
1+3+5+7+…+(2n-1)=n
2
.
观察下列一组数的排列:1,2,3,4,3,2,1,2,3,4,3,2,1,…,那么第2008个数是
4
4
.
探索规律:现有一列数,a
1
,a
2
,a
3
,…a
97
,a
98
,a
99
,a
100
,其中a
3
=9,a
7
=-7,a
98
=-1,且满足任意相邻三个数的和为同一常数,则a
1
+a
2
+a
3
+a
4
+…+a
97
+a
98
+a
99
+a
100
=
26
26
.
从2开始的连续偶数相加,它们和的情况如下表:
加数的个数(n)
和 (S)
1
2=1×2
2
2+4=6=2×3
3
2+4+6=12=3×4
4
2+4+6+8=20=4×5
5
2+4+6+8+10=30=5×6
…
…
(1)根据表中的规律,直接写出2+4+6+8+10+12+14=
56
56
;
(2)根据表中的规律猜想:S=2+4+6+8+…+2n=
n(n+1)
n(n+1)
(用n的代数式表示);
(3)利用上题中的公式计算102+104+106+…+200的值(要求写出计算过程).
观察下列三行数:
-1,2,-4,8,-16,32,…; ①
-2,4,-8,16,-32,64,…; ②
0,6,-6,18,-30,66,…; ③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第n个数,这三个数的和能否等于-1278?如果能,指出是每行的第几个数,并求出这三个数;如果不能,请说明理由.
(1)观察一列数a
1
=3,a
2
=9,a
3
=27,a
4
=81,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
3
3
;根据此规律,如果a
n
(n为正整数)表示这个数列的第n项,那么a
6
=
3
6
3
6
,a
n
=
3
n
3
n
;(可用幂的形式表示)
(2)如果想要求1+2+2
2
+2
3
+…+2
10
的值,可令
S
10
=1+2+
2
2
+
2
3
+…+
2
10
①将①式两边同乘以2,得
2S
10
=2+2
2
+2
3
+…+2
10
+2
11
2S
10
=2+2
2
+2
3
+…+2
10
+2
11
②,由②减去①式,得S
10
=
2
11
-1
2
11
-1
.
(3)若(1)中数列共有20项,设S
20
=3+9+27+81+…+a
20
,请利用上述规律和方法计算S
20
的值.
(4)设一列数
1,
1
2
,
1
4
,
1
8
,…,
1
2
n-1
的和为S
n
,则S
n
的值为
2-
1
2
n-1
2-
1
2
n-1
.
观察下面三行数:
2,-4,8,-16,…①
-1,2,-4,8,…②
3,-3,9,-15,…③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和?
探究题:
数学问题:各边长都是整数,最大边长为21的三角形有多少个?
为解决上面的数学问题,我们先研究下面的数学模型:
数学模型:在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有多少种不同取法?
为找到解决问题的方法,我们把上面数学模型简单化.
(1)在1~4这4个自然数中,每次取两个不同的数,使得所取的两个数之和大于4,有多少种取法?
根据题意,有下列取法:1+4,2+3,2+4,3+2,3+4,4+1,4+2,4+3,而1+4与4+1,2+3与3+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3
2
=4=
4
2
4
种不同的取法.
(2)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种取法?
根据题意,有下列取法:1+5,2+4,2+5,3+4,3+5,4+2,4+3,4+5,5+1,5+2,5+3,5+4,而1+5与5+1,2+4与4+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3+4
2
=6=
5
2
-1
4
种不同的取法.
(3)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
根据题意,有下列取法:1+6,2+5,2+6,3+4,3+5,3+6,4+3,4+5,4+6,5+2,5+3,5+4,5+6,6+1,6+2,6+3,6+4,6+5,而1+6与6+1,2+5与5+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+3+3+4+5
2
=9=
6
2
4
种不同的取法.
(4)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,有多少种取法?
根据题意,有下列取法:1+7,2+6,2+7,3+5,3+6,3+7,4+5,4+6,4+7,5+3,5+4,5+6,5+7,6+2,6+3,6+4,6+5,6+7,7+1,7+2,7+3,7+4,7+5,7+6,而1+7与7+1,2+6与6+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+3+3+4+5+6
2
=12=
7
2
-1
4
种不同的取法…
问题解决
仿照上述研究问题的方法,解决上述数学模型和提出的问题
(1)在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,共有
110
110
种不同取法;(只填结果)
(2)在1~n(n为偶数)这n个自然数中,每次取两个数,使得所取的两个数字之和大于n,共有
n
2
4
n
2
4
种不同取法;(只填最简算式)
(3)在1~n(n为奇数)这n个自然数中,每次取两个数,使得所取的两个数之和大于n,共有
n
2
-1
4
n
2
-1
4
种不同取法;(只填最简算式)
(4)各边长都是整数且不相等,最大边长为21的三角形有多少个?(写出最简算式和结果,不写分析过程)
第一页
上一页
57
58
59
60
61
下一页
最后一页
1337626
1337629
1337630
1337634
1337636
1337640
1337642
1337644
1337646
1337649