数学
如图,某同学不小心把一块三角形的玻璃打碎成三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带
①
①
去,这是因为这两块玻璃全等,其全等的依据是
ASA
ASA
.
如图所示.A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1km,DC=1km,村庄AC,AD间也有公路相连,且公路AD是南北走向,AC=3km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2km,BF=0.7km.试求建造的斜拉桥长至少有
1.1
1.1
km.
如图,有两个长度相同的滑梯BC和EF,滑梯BC的高度AC等于滑梯EF在水平方向上的长度DF,则∠ABC+∠DFE=
90
90
度.
(2002·湛江)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.
(2007·西城区一模)农科所有一块五边形的实验田,用于种植1号良种水稻进行实验,如图所示,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=20米,
(1)若每平方米实验田需要水稻1号良种25克,若在△ABC和△ADE实验田中种植1号良种水稻,问共需水稻1号良种多少克?
(2)在该五边形实验田计划全部种上这种1号良种水稻,现有1号良种9千克,问是否够用,通过计算加以说明.
综合应用:要测量不能直接到达的池塘两岸A、B两点的距离,有的同学采用了这样的方法:
(1)如图,要测量水池的宽AB,过A作线段AC⊥AB,再由点C观测,在BA延长线上找一点B
1
,使∠ACB
1
=∠ACB,这时只要量出AB
1
的长度,就知道AB的长了.这种作法对吗?并请说明理由.
(2)你一定还有更好的测量AB的方法,请说出一种,画出图形,并说明你的作法是正确的.
如图,要测量池塘A、B两点间的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再过D点作出BF的垂线DG,并在DG上找一点E,使A、C、E在一条直线上,这时,测量DE的长就是AB的长,为什么?
某人站在河南岸B处欲测河的宽度BA,他采用了以下方法:
①沿河南岸选定两点C、D,使B、C、D在同一直线上,且BC=CD,BD⊥BA;
②在经过点D,且与河岸垂直的方向上选取点E,使A、C、E在同一条直线上;
③量出DE长即为河宽,他的测量方法是否正确?为什么.
如图所示,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E、M、F,M恰好为BC的中点,且E、F、M在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B、E之间的距离,你能想出解决的方法吗?请说明其中的道理.
如图,A、B、C、D是四个村庄,B、D、C三村在一条东西走向公路的沿线上,且D村到B村、C村的距离相等;村庄A、C,A、D间也有公路相连,且公路AD是南北走向;只有村庄A、B之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AC=3千米,AE=1.2千米,BF=0.7千米.试求建造的斜拉桥至少有多少千米?
第一页
上一页
147
148
149
150
151
下一页
最后一页
1295003
1295006
1295008
1295015
1295022
1295024
1295030
1295037
1295041
1295045