数学
铁道上的栏杆的短臂长为1.25m,长臂为17.5m,如图要使长臂端点升高16m,则短臂端点要下降
8
7
8
7
m.
如图,数学兴趣小组测量校园内旗杆的高度,小华拿一支刻有厘米分划的小尺,站在距旗杆30米的地方,手臂向前伸直,小尺竖直,看到尺上约12个分划恰好遮住旗杆,已知臂长60cm,则旗杆高为
6
6
米.
如图所示,球从A处射出,经球台挡板CD反射,击中球B.已知AC=10cm,BD=15cm,CD=50cm,则点E应距点C为
20
20
cm.
测量旗杆的方法有
利用阳光下的影子
利用阳光下的影子
,
利用标杆
利用标杆
,
利用镜子的反射
利用镜子的反射
.
由一块底长2m、高3m的等腰三角形木板中锯下一块最大的正方形(正方形木板有一边与三角形木板的底边重合).这块正方形木板的面积是
36
25
36
25
平方米.
《数书九章》中有一题目为:望故远近.内容如下:问敌军处北山下原,不知相去远近.乃于平地立一表(标杆),高四尺,人退表九百步(一步为五尺),遥望山原,适与表端参合(人目、标杆端和山脚三点共线).人目高四尺八寸,欲知敌军相去几何(敌我之间的距离).通过计算可知答案为
5400
5400
步.
如图,是一轴截面为等腰三角形的古塔,塔基圆直径为10米,塔共四层,每层高3米,天意广告公司欲沿塔面悬挂一幅公益广告条幅,要求条幅不能铺在地面上,也不能高于塔顶,则条幅的最大长度为
13
13
米.
(2009·陕西)在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直).
如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).
(2009·三明)如图,A、B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A、B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①、②、③所示(图中a,b,c表示长度,α,β,θ表示角度).
(1)请你写出小明设计的三种测量方法中AB的长度:
图①AB=
α·tanα
α·tanα
,图②AB=
2c
2c
,图③AB=
b
b
;
(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.
(2009·江西)问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图2,测得学校旗杆的影长为900cm.
丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式156
2
+208
2
=260
2
)
第一页
上一页
294
295
296
297
298
下一页
最后一页
1291700
1291703
1291706
1291711
1291723
1291724
1291729
1291733
1291735
1291738