数学
如图,在正方形ABCD中,点E为CD的中点,EH⊥AC于点H.
(1)求∠DCA的度数;
(2)若AB=4,求EH的长.
将直角三角板的直角顶点O放在正方形ABCD的内部,转动三角板,使其两条直角边分别与正方形的边BC,CD相交于点E,F,如图所示.
(1)当三角板转到OE⊥BC,OF⊥CD,且OE=OF的位置时,试确定点O的位置;
(2)当三角板转到仅满足OE=OF的位置时,(1)中的结论仍成立吗?请说明理由.
已知正方形ABCD的边长为
2
,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别做直线AC、BD的垂线PE、PF,垂足为E、F.
(1)如图1,当P点在线段AB上时,试说明四边形PEOF是矩形;
(2)如图1,当点P在线段AB上时,求PE+PF的值;
(2)如图2,当P点在线段AB的延长线上时,求PE-PF的值.
如图,正方形ABCD的两条对角线交于点O.
(1)若H为OC上一点,过A作BH的垂线,垂足为E,AE与BO相交于点G.试探索OH与OG的数量关系,并证明;
(2)若点H在OC的延长线上,过A作BH的垂线,交HB的延长线于点E,直线AE与OB相交于点G.(1)中的结论还成立吗?若成立,给出证明;若不成立,请说明理由.
正方形ABCD中对角线AC、BD相交于点O,E是AC上一点,F是OB上一点,且OE=OF,回答下列问题:
(1)在图中1,可以通过平移、旋转、翻折中的哪一种方法,使△OAF变到△OBE的位置.请说出其变化过程.
(2)指出图(1)中AF和BE之间的关系,并证明你的结论.
(3)若点E、F分别运动到OB、OC的延长线上,且OE=OF(如图2),则(2)中的结论仍然成立吗?若成立,请证明你的结论;若不成立,请说明你的理由.
如图,在正方形ABCD中,E为AB边上的一点,连接DE,过A作AF⊥DE于F,过C作CG⊥DE于G.已知AF=1,CG=2,求正方形的边长.
如图,正方形ABCD的边长为1,G是CD边上的一个动点(G不与C、D重合),以CG为一边向正
方形ABCD外作正方形GCEF,连接DE、BG,并延长BG交DE于点H.
(l)求证:①△BCG≌△DCE;②BH⊥DE.
(2)当点G运动到何处时,四边形DGEF是平行四边形,并加以证明.
(3)当点G运动到何处时,BH垂直平分DE?请说明理由.
如图:正方形OABC中,B点的坐标为(2,2).D、E分别在边AB、BC上,F在BC的延长线上.且AD=CF,∠EDO=∠DOC.
(1)猜想△OAD与△OCF能否通过旋转重合?请证明你的猜想.
(2)若D是AB的中点.求直线DE的解析线.
已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.
(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;
(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?
(3)点M能是AB边上任意一点吗?请求出AM的取值范围.
已知点E是正方形ABCD外的一点,EA=ED,线段BE与对角线AC相交于点F,
(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;
(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、EF之间的一个数量关系,并证明.
第一页
上一页
87
88
89
90
91
下一页
最后一页
1242861
1242863
1242864
1242866
1242868
1242870
1242872
1242874
1242876
1242878