数学
(2011·南开区一模)已知,点Q是正方形ABCD内的一点,连QA、QB、QC.
(I)将△QAB绕点B顺针旋转90°到△Q'CB的位置(如图①所示).若QA=1,QB=2,∠AQB=135°,求QC的长.
(II)如图②,若QA
2
+QC
2
=2QB
2
,请说明点Q必在对角线AC上.
(2011·利川市一模)如图,ABCD和BEFG都是正方形,A、B、E三点在同一直线上,连接AC、EC、AG,延长AG交EC于H.
(1)求证:△ABG≌△CBE;
(2)探索直线AH与EC的位置关系,并证明你的结论.
(2005·大连)如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.
探究:线段MD、MF的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.
①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.
附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明.
(2004·厦门)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;
(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.
(2003·新疆)已知:如图,正方形ABCD的周长为4a,四边形EFGH的四个顶点E、F、G、H分别在AB、BC、CD、DA上滑动,在滑动过程中,始终有EH∥BD∥FG,且EH=FG,那么四边形EFGH的周长是否可求?若能求出,它的周长是多少?若不能求出,请说明理由.
(2003·娄底)如图所示,在正方形ABCD中,点E、F是BC边上的三等分点,求证:AF=DE.
(2002·上海)操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).
(2002·宁夏)如图,已知四边形ABCD是正方形,对角线AC、BD相交于O,四边形AEFC是菱形,EH⊥AC,垂足为H.求证:EH=
1
2
FC.
(2002·泸州)如图,点C是线段BA延长线上的一点,正方形ACDE和正方形ABGF在AB的同侧.求证:CF=BE.
(2000·荆门)已知:E是正方形ABCD的边BC上的中点,F是CD一点,AE平分∠BAF.
求证:AF=BC+CF.
第一页
上一页
104
105
106
107
108
下一页
最后一页
1243214
1243216
1243218
1243221
1243224
1243225
1243227
1243229
1243230
1243232