答案
证明:在正方形ABCD中,AC⊥BD,AC=BD,OB=
BD=
AC,
又∵四边形AEFC是菱形,
∴AC=CF,AC∥EF,
∵EH⊥AC,∠DBC=∠ABD=∠CBF,
∴∠BOH=∠OHE=∠OBE=90°,
∴四边形BEHO是矩形,
∴EH=OB,
∴EH=
AC=
CF.
证明:在正方形ABCD中,AC⊥BD,AC=BD,OB=
BD=
AC,
又∵四边形AEFC是菱形,
∴AC=CF,AC∥EF,
∵EH⊥AC,∠DBC=∠ABD=∠CBF,
∴∠BOH=∠OHE=∠OBE=90°,
∴四边形BEHO是矩形,
∴EH=OB,
∴EH=
AC=
CF.