数学
(2010·江门一模)如图,P、Q分别是正方形ABCD的边AB、AD上一点,AP=AQ.
(1)作Q关于直线BD的对称点R(不写作法,保留作图痕迹);
(2)连接DP、BR,证明BRDP是平行四边形.
(2010·建邺区一模)如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.
求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.
(2010·海沧区质检)如图,正方形ABCD的边长为
2
2
,E是边AD上的一个动点(不与A重合),BE交对角线于F,连接
DF.
(1)求证:BF=DF;
(2)设AF=x,△ABF面积为y,求y与x的函数关系式,并画出图象.
(2010·鼓楼区二模)阅读下列材料:
小明遇到一个问题:如图1,正方形ABCD中,E、F、G、H分别是AB、BC、CD和DA边上靠近A、B、C、D的n等分点,连接AF、BG、CH、DE,形成四边形MNPQ.求四边形MNPQ与正方形ABCD的面积比(用含n的代数式表示).
小明的做法是:
先取n=2,如图2,将△ABN绕点B顺时针旋转90゜至△CBN′,再将△ADM绕点D逆时针旋转90゜至△CDM′,得到5个小正方形,所以四边形MNPQ与正方形ABCD的面积比是
1
5
;
请你参考小明的做法,解决下列问题:
(1)取n=3,如图3,四边形MNPQ与正方形ABCD的面积比为
2
5
2
5
(直接写出结果);
(2)在图4中探究,n=4时四边形MNPQ与正方形ABCD的面积比为
9
17
9
17
(在图4上画图并直接写出结果);
(3)猜想:当E、F、G、H分别是AB、BC、CD和DA边上靠近A、B、C、D的n等分点时,四边形MNPQ与正方形ABCD的面积比为
(n-1)
2
n
2
+1
(n-1)
2
n
2
+1
(用含n的代数式表示);
(4)图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图5中画出并指明拼接后的正方形).
(2010·鼓楼区二模)在平面直角坐标系中,O为坐标原点.
(1)已知点A(3,1),连接OA,作如下探究:
探究一:平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),请在图1中作出BC,点C的坐标是
(4,3)
(4,3)
;
探究二:将线段OA绕点O逆时针旋转90度,设点A落在点D.则点D的坐标是
(-1,3)
(-1,3)
;
(2)已知四点O(0,0),A (a,b),C,B(c,d),顺次连接O,A,C,B.
①若所得到的四边形为平行四边形,则点C的坐标是
(a+c,b+d)
(a+c,b+d)
;
②若所得到的四边形是正方形,请直接写出a,b,c,d应满足的关系式.
(2010·藁城市一模)如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以P
Q为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
(1)用含t的代数式表示点P的坐标;
(2)分别求当t=1,t=5时,线段PQ的长;
(3)求S与t之间的函数关系式;
(4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围.
(2010·禅城区模拟)下面我们来定义一个数学概念.平面区域的平分线:一条曲线围成的平面区域.连接边界两点的一条曲线,如果把平面区域分成面积相等的两部分,则称其为区域的平分线.(注意:直线段、折线都视为曲线.)
我们可以求得边长为1的等边△ABC三条平分线:等边三角形的高、平行于边的线段和圆心在顶点的
1
6
圆周,它们的长度分别为
3
2
、
2
2
和
π
4
3
.如图.
请解答下面的问题:给定一个边长为1的正方形ABCD,如图.
(1)指出与例子类似的三条平分线;
(2)求出你指出的三条平分线的长度;
(3)比较这三条平分线长度的大小.
(2009·无锡一模)如图,以正方形ABCD的边CD为直径作⊙O,以顶点C为圆心、边CB为半径作
BD
,E为BC
的延长线上一点,且CD、CE的长恰为方程x
2
-2(
3
+1)x+4
3
=0的两根,其中CD<CE.连接DE交⊙O于点F.
(1)求DF的长;
(2)求图中阴影部分的面积S.
(2009·井研县一模)如图,正方形ABCD的边长为2,E是BC中点.F是BD上的一个动点(F与B、D不重合)
(1)求证:△AFB≌△CFB;
(2)设折线EFC的长为m,求m的最小值,并说明点F此时的位置.
(2009·津南区二模)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.
(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;
②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.
(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=
1
2
,求BE
2
+DG
2
的值.
第一页
上一页
99
100
101
102
103
下一页
最后一页
1243113
1243115
1243116
1243118
1243120
1243122
1243123
1243127
1243128
1243130