试题
题目:
(2009·井研县一模)如图,正方形ABCD的边长为2,E是BC中点.F是BD上的一个动点(F与B、D不重合)
(1)求证:△AFB≌△CFB;
(2)设折线EFC的长为m,求m的最小值,并说明点F此时的位置.
答案
(1)证明:在△AFB与△CFB中,AB=BC,BF=BF,∠ABD=∠CBD=45°
∴△AFB≌△CFB(5分)
(2)解:∵△AFB≌△CFB
∴AF=FC(1分)
∴m=EF+CF=EF+AF
仅当A,F,E在一条直线时m取得最小值(4分)
此时连接AE交BD于F,有AE=
5
(1分)
故m的最小值为
5
此时F是AE与BD的交点.(1分)
(1)证明:在△AFB与△CFB中,AB=BC,BF=BF,∠ABD=∠CBD=45°
∴△AFB≌△CFB(5分)
(2)解:∵△AFB≌△CFB
∴AF=FC(1分)
∴m=EF+CF=EF+AF
仅当A,F,E在一条直线时m取得最小值(4分)
此时连接AE交BD于F,有AE=
5
(1分)
故m的最小值为
5
此时F是AE与BD的交点.(1分)
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
(1)AB=CB,∠ABD=∠CBD=45°,BF=BF,SAS可证△AFB≌△CFB;
(2)AF=FC,EFC的长=EF+CF=EF+AF,当A,F,E在一条直线时m取得最小值.
解答本题要充分利用正方形的特殊性质,SAS证明△AFB≌△CFB.求m的最小值,用到两点之间线段最短.
动点型.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )